
Micropython IoT Hackathon
Documentation

Release 1.3.4

Jeff Fischer

Aug 09, 2017

Contents

1 1. Introduction 3
1.1 Background . 3
1.2 Hardware Overview . 3
1.3 Software Overview . 4
1.4 GitHub Repository . 5
1.5 Outline of this Document . 5

2 2. Required (and Recommended) Parts and Tools 7
2.1 Parts . 7
2.2 Recommended Tools . 10

3 3. Hardware Assembly 11
3.1 Cautions . 11
3.2 Breadboards . 12
3.3 Seating and Soldering the Breakout Boards . 12
3.4 Board connections . 13
3.5 Verifying Connections . 17

4 4. Software and Firmware Install 19
4.1 Software Prerequisites . 19
4.2 Testing Your Connection . 20
4.3 Installing the Firmware and Testing the REPL . 21

5 5. ThingFlow Application 23
5.1 ThingFlow . 23
5.2 Reading the Light Sensor . 23
5.3 A Light Sampling Application . 25

6 6. Messaging with MQTT 27
6.1 MQTT Basics . 27
6.2 Host-side Setup . 29
6.3 ESP8266 Setup . 29
6.4 Interactive Testing . 30
6.5 Putting it all Together . 31

7 7. Projects 35
7.1 Sensor Data Visualization . 35

i

7.2 Lighting Replay Application . 37
7.3 More Sensors . 37
7.4 Actuators . 39
7.5 Open-ended Projects . 39
7.6 Another Micropython/ESP8266 Tutorial . 41

8 8. Teachers’ Notes 43
8.1 Announcement . 43
8.2 Soldering and Hardware Preparation . 43
8.3 Lecture . 44

9 9. Quick Software Setup 45
9.1 Debian 9 Linux . 45
9.2 MacOS . 46

10 Copyright and License 49

11 Acknowledgements 51

12 Indices and tables 53

ii

Micropython IoT Hackathon Documentation, Release 1.3.4

Abstract:

Due in large part to the availability of cheap, low-power, internet-connected microcontrollers, the Internet of Things
is taking off. Python developers can get in on the excitement with MicroPython, an implementation of Python 3 that
runs on very small devices with no operating system. MicroPython provides the standard Python REPL (read-eval-
print-loop) interface, so you can interactively develop and debug applications on these small devices.

This document provides instructions for a hackathon/class centered around MicroPython. In the class, students will
learn some basic electronics, wire up some sensors to a low-power wireless controller board (based on the ESP8266
microcontroller), load the MicroPython firmware, and interactively write simple applications to read from the sensors.
It also discusses how to connect to other systems via the MQTT messaging protocol and exchange ideas on larger
projects that can be built at home for low cost with beginner-level knowledge.

This was original created for use at a San Francisco Python Project Night meetup. It is designed to be reusable for
other classes as well as for individual study.

Contents:

Contents 1

Micropython IoT Hackathon Documentation, Release 1.3.4

2 Contents

CHAPTER 1

1. Introduction

Background

MicroPython1 is an implementation of Python 3 that can on on small devices without a traditional operating system.
It requires just 256k of code space and 16k of RAM. One of the microcontrollers supported is the ESP82662, a low
cost microcontroller with a 32-bit CPU, a built-in WiFi radio, and a number of input/output ports useful for interfacing
with the physical world. Since the ESP8266 can run off a small lithium ion battery, it makes a great remote sensing
and control platform. Complete development boards using the ESP8266 run anywhere from $3 to $16, cheap enough
that you can deploy multiple systems.

Hardware Overview

We will build a wireless system that combines the ESP8266 with a light sensor (the TSL2591 ambient light sensor from
AMS). Each of these will be used via a breakout board – small printed circuit boards that combine multiple surface
mount chips and provided easy connection points. The sensor and processor connect via a digital serial protocol
called I2C3. This will involve connecting a total of four connections between the boards. We will facilitate these
interconnections using a prototyping breadboard. The breakout boards can be plugged into the breadboard and then
the wires stuck into the breadboard to connect the pins on the chips.

The breakout boards for the ESP2866 have a Micro-USB connector attached to a serial port on the processor. We will
connect this to a laptop/PC, allowing for firmware updates, file transfer, and interactive communication.

Once the basic system is up and running, additional sensors can be added.

1 http://www.micropython.org
2 https://en.wikipedia.org/wiki/ESP8266
3 http://cache.nxp.com/documents/user_manual/UM10204.pdf

3

http://www.micropython.org
https://en.wikipedia.org/wiki/ESP8266
http://cache.nxp.com/documents/user_manual/UM10204.pdf

Micropython IoT Hackathon Documentation, Release 1.3.4

Software Overview

We will first update the firmware to use the latest version of MicroPython. Then, we can copy over a library module
to read the light sensor. We can call it interactively via the Python REPL to sample the sensor. Next, we can copy over
the ThingFlow framework and write a short program to periodically sample the sensor.

To use the system remotely, we will send messages over the WiFi radio. This involves setting up the credentials and
sending messages via the MQTT protocol (MicroPython provides a library for this). We can set up an MQTT broker
on the laptop/PC to receive these messages.

Finally, we will configure the ESP8266 to start our software upon reboot. Here is a block diagram of the completed
system:

4 Chapter 1. 1. Introduction

Micropython IoT Hackathon Documentation, Release 1.3.4

GitHub Repository

Example code and the source for this documentation are available in a GitHub repository at: https://github.com/
jfischer/micropython-iot-hackathon.

Outline of this Document

We cover the construction and programming of the system starting with the parts you need and moving toward end-
to-end applications. The following topics are covered:

• 2. Required (and Recommended) Parts and Tools - the parts you will need to find/purchase and the tools required
to build and debug the system.

• 3. Hardware Assembly - connect a light sensor up to the ESP8266.

• 4. Software and Firmware Install - install firmware and interact with the board over a USB connection.

• 5. ThingFlow Application - use the ThingFlow framework to build a simple light sensor sampling application.

• 6. Messaging with MQTT - use the MQTT protocol to send our sensor events over the wireless network.

• 7. Projects - we sketch out some follow-on projects involving additional sensors and larger applications. This is
the jumping point for you to be creative and try out your own ideas.

• 8. Teachers’ Notes - some notes for instructors who are using the material as a template for a class.

• 9. Quick Software Setup - for fast software and firmware setup.

OK, now let’s get started with the parts and tools that you need.

1.4. GitHub Repository 5

https://github.com/jfischer/micropython-iot-hackathon
https://github.com/jfischer/micropython-iot-hackathon

Micropython IoT Hackathon Documentation, Release 1.3.4

6 Chapter 1. 1. Introduction

CHAPTER 2

2. Required (and Recommended) Parts and Tools

Parts

The table below lists the parts required for assembling our system:

7

Micropython IoT Hackathon Documentation, Release 1.3.4

Part Adafruit Part Alternative Part(s)
Price Range

ESP8266 Breakout
Board

Adafruit Feather
HUZZAH with ESP8266
WiFi (part 2821)

Various NodeMCU
boards

$4.00 - $15.95

TSL2591 Breakout
Board

Adafruit TSL2591
Digital Light Sensor
(part 1980)

N/A

$6.95

Lithium Ion 3.7v
350mAh battery

Lithium Ion Polymer
Battery 3.7v 350mAh
(part 2750)

Any 3.7v with
JST-PH connector
(for Adafruit
ESP8266 board
only)

$6.95

Half-size
breadboard

Half-size breadboard
(part 64)

Various

$2.00 - $5.00

Micro-USB to
USB cable

USB cable - 6”
A/MicroB (part 898)

Any with data
connection

$2.95

Breadboarding
wires

Breadboarding wire
bundle (part 153)

22-26GA solid
core wire

$6.00

Total $21.90 - $43.80

And, here is a picture of the parts:

8 Chapter 2. 2. Required (and Recommended) Parts and Tools

Micropython IoT Hackathon Documentation, Release 1.3.4

Details

Here are some details about each part. If you are looking to save money, see the options discussed for each part.

ESP8266 Breakout Board The board from Adafruit is expensive, but high-quality and well-documented. It also
has a built-in battery connection and can charge the battery via the USB. You can also use boards built for
the NodeMCU project. These can be found on Amazon for around $9 or directly from Chinese suppliers for
as cheap as $4 (e.g. gearbest.com or alibaba.com). As the NodeMCU boards do not have a built-in battery
connection, connecting a battery is a little more complex (and beyond the scope of this Hackathon).

TSL2591 Breakout Board This board is specific to Adafruit. It includes some extras, like a voltage regulator.
Adafruit and SparkFun also have a breakout board for the TSL25**6**1. This light sensor also uses the I2C
bus, but it is not as sensitive as the TSL2591.

Lithium Ion Battery You only need this if you have the Adafruit Feather HUZZAH board and are going to run the
system disconnected from the USB (most remote sensing scenarios). You can also use batteries with a higher
mAh rating.

Half-size breadboard This will fit our two breakout boards. If you have more sensors you want to connect, you
might consider a full-size breadboard. These are available from many suppliers. If you are buying for a class,
you might find quantity discounts (e.g. we found 10 boards for $1.60 each).

Micro-USB to USB cable This connects the ESP8266 breakout board to the Laptop/PC. You can use just about any
such cable (you probably have a few laying around your house), but it must have both data and power connec-
tions.

Breadboarding wires These are pre-cut male jumper wires that we will use to make the connections on the bread-
board. You can also just get a spool of insulated solid wire from 22 to 26 gauge and use a wire stripper and

2.1. Parts 9

Micropython IoT Hackathon Documentation, Release 1.3.4

cutters to get wires of the right size.

Recommended Tools

Here is a picture of the tools we recommend to build and test the system:

Details

Multimeter A multimeter (or multitester) is an instrument that measures voltage, current, and resistance. As you
build your system, you can use the resistance measurements to check whether connections are made (should be
either resistance of zero or infinity). You may also need/want to check voltages. The multimeter pictured is an
old analog one. There are also new digital meters available for around $25.

Soldering iron and solder Adafruit provides the headers (a strip of plastic containing pins) separate from their break-
out boards. We need the soldering iron and solder to connect the headers to the boards. This allows us to insert
the breakout boards into the breadboard. If you are participating in a group hackathon, this step may have
already been done for you.

Wire strippers and wire cutters If you are not using the pre-cut jumper wires, you will need to cut and strip your
wires. You may want to have these tools handy anyway. Most wire strippers also can cut wires, but I find it
helpful to have a separate tool.

Needle-nose pliers Although not strictly necessary, these can be helpful.

Now, we are ready to begin the hardware assembly.

10 Chapter 2. 2. Required (and Recommended) Parts and Tools

CHAPTER 3

3. Hardware Assembly

To assemble our system, we will connect our light sensor to the ESP8266 board. This involves connecting ground and
power, and then the two signals needed for the I2C bus. The exact details depend on which ESP8266 board you are
using (different boards have different pinouts).

Cautions

First, a few important cautions to consider when working with electronic hardware.

Avoid Static Electricity

Static electricity (e.g. that shock you sometimes get when touching a doorknob) can damage electronic components.
When working with the breakout boards, you should take precautions to avoid static electricity. Some simple precau-
tions:

• If possible, avoid carpeted floors, rubber-soled shoes, and wool clothing.

• Most computer boards and chips come in anti-static packages. Keep them in the packaging until you need them.

• Touch some grounded metal (e.g. your computer’s chassis, if it is metal) before touching any electronic compo-
nents.

• Ideally, use a grounded anti-static wrist strap and mat when working with your components.

Plenty of resources about anti-static procedures are available online (e.g.1,2).

Avoid Short-circuits

In digital electronics, electrical current flows from a positive voltage supply (usually indicated by a red terminal),
through circuitry, and to the electrical ground (usually indicated by a black terminal). The positive power voltage is

1 http://www.howtogeek.com/169994/how-to-protect-your-pcs-hardware-from-static-electricity-when-working-on-it/
2 http://www.wikihow.com/Avoid-(Static)-Electric-Shock

11

http://www.howtogeek.com/169994/how-to-protect-your-pcs-hardware-from-static-electricity-when-working-on-it/
http://www.wikihow.com/Avoid-(Static)-Electric-Shock

Micropython IoT Hackathon Documentation, Release 1.3.4

typically 5 volts or 3.3 volts. You should never allow the power lines to be connected to the ground line, without the
proper electrical components in between. Ohm’s law3 states that current flowing is equal to the voltage divided by the
electrical resistance. If this resistance is zero (e.g. a direct connection), then an infinite current can flow. This is known
as a short circuit. Causing one will not only destroy your electrical components, but may also damage the USB port
on your computer.

OK, with that we are ready to start hooking up the hardware.

Breadboards

For easy, solderless connections that can be changed, we will use a breadboard. The picture below shows an example
breadboard and the electrical connections that exist between the holes:

If you were to peel the backing off the breadboard, you would see metal connections matching the lines shown in the
right side of the picture. These connect individual holes in a way that can be used to facilitate connections between pins
on the boards by inserting jumper wires. There are four horizontal connections running the length of the breadboard
that are intended for power connections. Between the top and bottom power connections, there are two rows vertical
connections, with 30 columns (at least on our half-size board).

Seating and Soldering the Breakout Boards

The ESP8266 and TSL2591 Breakout boards are inserted with their two rows of pins parallel to the power connections
and perpendicular to the smaller columns. This allows the holes directly above and below the pins to be used for
connections.

If you hold the board with the blue Ground row along the bottom, I recommend seating the ESP8266 board on the
right side. The miniUSB connector should be along the right edge of the board, for easy connectivity. The TSL2591
board is then seated to the left of the ESP8266 board. The picture below shows the two boards once they have been
seated:

3 https://en.wikipedia.org/wiki/Ohm’s_law

12 Chapter 3. 3. Hardware Assembly

https://en.wikipedia.org/wiki/Ohm's_law

Micropython IoT Hackathon Documentation, Release 1.3.4

Soldering

If one or both of your boards do not have their headers pre-soldered, I suggest seating the headers into the breadboard,
placing the breakout board on top of the headers, and then soldering. Detailed instructions on soldering the headers
may be found on the Adafruit website4,5.

Board connections

The Adafruit Feather HUZZAH and NodeMCU boards have different pinouts. Please follow the instructions below
for your board. Note that you should do all this wiring with your board unpowered (no battery and no connection to
your laptop via USB).

The wiring tables below make power connections through the horizontal power buses on the breadboards. This makes
it easy to add more circuitry to the board later. If you do not plan to do so, you can wire the power pins of the ESP8266
and sensor boards directly to each other, saving a few connections. Of course, be sure to wire 3V to 3V and GND to
GND.

Adafruit Feather HUZZAH ESP8266

Here are the connections to make if you have the Adafruit ESP8266 board:

4 https://learn.adafruit.com/adafruit-feather-huzzah-esp8266/assembly
5 https://learn.adafruit.com/adafruit-tsl2591/wiring-and-test?view=all#assembly

3.4. Board connections 13

https://learn.adafruit.com/adafruit-feather-huzzah-esp8266/assembly
https://learn.adafruit.com/adafruit-tsl2591/wiring-and-test?view=all#assembly

Micropython IoT Hackathon Documentation, Release 1.3.4

Connection Number Signal Name Location of Source Location of Destination
A1 GND

ESP8266 board pin #4
from right on top row

Bottom row of
breadboard

A2 GND

Bottom row of
breadboard

TSL2591 board
pin #2 from left

A3 3V

ESP8266 board pin #2
from right on top row

Top row
of breadboard

A4 Vin

Top row of
breadboard

TSL2591 board
pin #1 from left

A5 SDA (GPIO #4)

ESP8266 board pin #1
from left on bottom row

TSL2591 board
pin #5 from left

A6 SCL (GPIO #5)

ESP8266 board pin #2
from left on bottom row

TSL2591 board
pin #6 from left

Here is a logical wiring diagram:

And, finally, here is a photograph of the completed system using the Adafruit Feather Huzzah board:

14 Chapter 3. 3. Hardware Assembly

Micropython IoT Hackathon Documentation, Release 1.3.4

Now, please skip down below to the Verifying Connections section.

NodeMCU

Here are the connections to make if you have the NodeMCU ESP8266 board:

3.4. Board connections 15

Micropython IoT Hackathon Documentation, Release 1.3.4

Connection Number Signal Name Location of Source Location of Destination
N1 GND

ESP8266 board pin #7
from left on top row

Bottom row of
breadboard

N2 GND

Bottom row of
breadboard

TSL2591 board
pin #2 from left

N3 3V3

ESP8266 board pin #6
from left on top row

Top row of
breadboard

N4 Vin

Top row of
breadboard

TSL2591 board
pin #1 from left

N5 SDA (D2)

ESP8266 board pin #3
from left on top row

TSL2591 board
pin #5 from left

N6 SCL (D1)

ESP8266 board pin #2
from left on top row

TSL2591 board
pin #6 from left

Here is a logical wiring diagram:

16 Chapter 3. 3. Hardware Assembly

Micropython IoT Hackathon Documentation, Release 1.3.4

And, finally, here is a photograph of the completed system using the NodeMCU board:

Verifying Connections

Now that the system has been wired up, we can verify the connections. You might start by visually inspecting the
connections to make sure they match the wiring diagram. Pay special attention to the 3V and ground connections to
avoid short circuits. If you are unsure, set your multitester to resistance mode and check the resistance between GND
and 3V. It should be a high value.

Now, you can use the microUSB to USB cable and connect your system to your laptop. You should see an LED
light up (at least briefly) on the board. You can test the power connection by setting your multitester to voltage mode,
placing the black lead on a GND pin, and the red lead on a 3V pin. You should see a voltage around 3 volts.

Now, we are ready to install the firmware and software!

3.5. Verifying Connections 17

Micropython IoT Hackathon Documentation, Release 1.3.4

18 Chapter 3. 3. Hardware Assembly

CHAPTER 4

4. Software and Firmware Install

We are now ready to start installing software on our board, over the USB connection. For this, you will need a Mac,
Linux PC, or Windows PC. We have only tested the firmware procedure on Mac and Linux, so those systems are
recommended. However, others have successfully installed MicroPython from Windows, so it should work.

In the instructions that follow, we will use the term “host computer” to mean your PC/Mac/Linux box and “ESP8266”
to mean the ESP8266-based system you have assembled on the breadboard.

Software Prerequisites

Python

On your host computer, you will need an installation of Python 3, version 3.4 or later. As described below, you will be
adding a few packages to your Python install. Rather than add these packages to your system-wide Python install, we
recommend installing them into a virtual environment. See the Python documentation page for venv for details.

Erasing and flashing the firmware is done through a utility called esptool.py1. You can install it via pip with the
command:

pip install --upgrade esptool

If pip on your system defaults to Python 2, then use pip3 instead.

We will also use mpfshell, a shell-like utility for moving files between the ESP8266 and the host computer.2 It is
available on GitHub: https://github.com/wendlers/mpfshell. Install it with:

pip install git+https://github.com/wendlers/mpfshell

We will use the ThingFlow framework for writing some of the software running on the ESP8266. Please download
or clone the ThingFlow repository on GitHub: https://github.com/mpi-sws-rse/thingflow-python. Note that we will

1 https://pypi.python.org/pypi/esptool/1.3
2 MicroPython has a web-based interface for transferring files over the WiFi network. However, we have seen some problems with using it and

recommend using mpfshell

19

https://docs.python.org/3/library/venv.html
https://github.com/wendlers/mpfshell
https://github.com/mpi-sws-rse/thingflow-python
https://pypi.python.org/pypi/esptool/1.3

Micropython IoT Hackathon Documentation, Release 1.3.4

not be using the packaged version of ThingFlow available on pypi.python.org. That version is only for the standard
CPython implementation. We will be using the code in the micropython subdirectory of the ThingFlow source
tree.

MicroPython Firmware

You can download the latest version of the MicroPython firmware for ESP8266 from here: http://micropython.org/
download#esp8266. You will want the latest stable firmware version3. Since the name of the firmware file will change
over time, we will refer to it as esp8266-YYYYMMDD-vX.Y.Z.bin in any commands. Just substitute with name
of your image file.

Mac-specific

If you are using a Mac, you will need to download a USB to UART bridge driver from Silicon Labs. This will allow
your Mac to send serial communications for the Silicon Labs USB adapter chip on your ESP8266 board. The driver is
available from their website: https://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx

For interacting with the Python REPL running on the ESP8266, you will use the screen program. It comes pre-
installed on MacOS.

Linux-specific

You should not need any drivers for the serial connection. You will want to add your user to the dialout group so it
can access the tty device for the serial connection. Replacing MYUSER with your user id, the command is:

sudo adduser MYUSER dialout

We will be using the GNU screen program to interact with the Python REPL running on the ESP8266. If it is not
already installed, you will need to do so. If you are running a Debian-based distribution (Debian, Ubuntu, Raspbian),
then you can install it via:

sudo apt-get install screen

Windows-specific

You will need the PuTTY program to interact with the Python REPL running on the ESP8266. It is free and available
at http://www.putty.org.

As stated above, we have not attempted this process with a Windows host. We suggest that you follow the instructions
here: http://www.instructables.com/id/The-Super-Easy-Micropython-ESP8266-Guide-No-Guessw/?ALLSTEPS.

The rest of the instructions below are for Mac and Linux. You should be able to follow along using the Instructables
guide as a reference. You will use PuTTY instead of screen. Of course, the command options will be slightly
different.

Testing Your Connection

With the prerequisite software installed, you can now connect your ESP8266 and verify that it can talk to your host
system. Using the microUSB to USB cable, plug it into the USB port. Now, look for a new serial tty device in

3 At the time this is being written, the latest stable version is 1.8.7, and the firmware image filename is esp8266-20170108-v1.8.7.bin.

20 Chapter 4. 4. Software and Firmware Install

http://micropython.org/download#esp8266
http://micropython.org/download#esp8266
https://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx
http://www.putty.org
http://www.instructables.com/id/The-Super-Easy-Micropython-ESP8266-Guide-No-Guessw/?ALLSTEPS

Micropython IoT Hackathon Documentation, Release 1.3.4

your /dev directory. On Mac, it should be called /dev/tty.SLAB_USBtoUART. On Linux, it should be called
/dev/ttyUSB0. The device will only be present when your ESP8266 board is plugged in.

Now, run screen as follows (substituting TTYDEVICE with ttyUSB0 or tty.SLAB_USBtoUART):

screen /dev/TTYDEVICE 115200

The 115200 is the baud rate. Now, press the reset key. You should see some characters, either a prompt or some
garbage. If you get garbage, you might try a baud rate of 9600. Do not be worried at this point if you only see garbage,
we are going to rewrite the firmware anyway. As long as you saw the tty device, you should be OK.

Now, exit screen (pressing Control-A k and then “y”), and run the reset command in your terminal session. You
are ready to install the firmware.

Installing the Firmware and Testing the REPL

We will use esptool.py to erase the old firmware and install the latest version of MicroPython4. Plug your ESP8266
back into the USB port and run the following from the command line:

esptool.py --port /dev/TTYDEVICE erase_flash

Now, install the new firmware with the following (substituting in the device name and MicroPython image file name):

esptool.py --port /dev/TTDEVICE --baud 460800 write_flash \
--flash_size=detect --verify -fm dio 0 esp8266-YYYYMMDD-vX.Y.Z.bin

If this step fails, you might try lowering the baud rate (e.g. from 460800 to 115200).

Next, we will use screen to connect to our board. From the command line:

screen /dev/TTYDEVICE 115200

Now, press the reset button on your ESP8266 board5. In your screen session, you should see some garbage charac-
ters followed by a version string and a prompt. For example:

4 You can also find instructions for this in the MicroPython documentation. The relevant section is at https://docs.micropython.org/en/latest/
esp8266/esp8266/tutorial/intro.html

5 On both the NodeMCU and Adafruit boards, the reset button is labeled “RST”. You can use this button to force a reboot of the system. This is
useful to get it to a known state (recommended after plugging into the USB connection).

4.3. Installing the Firmware and Testing the REPL 21

https://docs.micropython.org/en/latest/esp8266/esp8266/tutorial/intro.html
https://docs.micropython.org/en/latest/esp8266/esp8266/tutorial/intro.html

Micropython IoT Hackathon Documentation, Release 1.3.4

You should now be able to type Python code in at the prompt:

>>> print("Hello, world")
Hello, world
>>>

Congratulations, you have MicroPython running on your ESP8266! If you had problems, you might try looking at the
troubleshooting hints provided in the MicroPython documentation6.

Next, let’s write an application for our board.

6 https://docs.micropython.org/en/latest/esp8266/esp8266/tutorial/intro.html#troubleshooting-installation-problems

22 Chapter 4. 4. Software and Firmware Install

https://docs.micropython.org/en/latest/esp8266/esp8266/tutorial/intro.html#troubleshooting-installation-problems

CHAPTER 5

5. ThingFlow Application

Now that our board is up and running, we can use ThingFlow to build a simple application.

ThingFlow

ThingFlow is a Python 3 framework for building IoT event processing and filtering applications. It is centered around
event streams, which are infinite sequences of timestamped sensor value samples. The key components in ThingFlow
are sensors, which capture data from the outside world, things, which transform event streams, and the scheduler
which manages the recurring sampling of sensors. ThingFlow allows you to write your IoT code as data flows (“from
this to that”) instead of as procedural code (“if this then that”).

There are two implementations of ThingFlow in Python. The goal is to provide a common API from very small sensor
nodes (like the ESP8266) to large servers (for event concentration and data science). We will be using the MicroPython
version, which may be found in the micropython subdirectory of the thingflow-python repository.

Due to the memory limitations of the ESP8266, the MicroPython version is very stripped down, and only supports a
subset of the full ThingFlow API. That will be fine for our application, as the focus of our code will be to sample the
light sensor and send the values over the network to a larger system for processing and / or storage.

Reading the Light Sensor

A sensor in ThingFlow is a Python object which satisfies two criteria:

1. It provides a sensor_id property which can be used in event messages to uniquely identify the sensor.

2. It provides a sample() method which returns the current value associated with the sensor.

The ThingFlow MicroPython implementation includes a sensor implementation for the TSL2591 lux sensor. We will
first copy this over to the ESP8266 and verify that we can read the sensor.

23

https://github.com/mpi-sws-rse/thingflow-python

Micropython IoT Hackathon Documentation, Release 1.3.4

Copying Files

Close any previous screen sessions with your ESP8266 system, and restart it.

In a terminal session, go to the micropython subdirectory of the ThingFlow repository. From this directory, run
the mpfshell utility. In this session type the following (substituting tty.SLAB_USBtoUART or ttyUSB0 for
TTYDEVICE):

open TTYDEVICE
ls

The open command establishes a connection to your ESP8266. The ls will list the files on that system (MicroPython
includes a very simple filesystem implementation). Initially, you should only see the file boot.py, which is installed
as a part of the firmware flash.

Now, run the command lls. This lists the files on your host system, in the directory where you ran mpfshell. Now,
run the following:

lcd sensors
lls

This changes the host directory to the sensors subdirectory and lists the files. One of the files you should see is
tsl2591.py. This is the code which implements the interface to the light sensor.

Now, run:

put tsl2591.py
ls

This copies the file tsl2591.py to the ESP8266 and lists the files on it. We should now see our sensor code file, in
addition to boot.py.

Calling the Light Sensor

Next, we want to import and call the sensor code from the MicroPython REPL. There are two ways to do this:

1. You can access the REPL directly from mpfshell. Just enter the command repl, and you will be in the
REPL. You can later exit the REPL and get back to the main shell via the key combination CONTROL and “]”.

2. Alternatively, you can exit mpfshell and then run screen again to get a REPL directly.

Either way, once we are in the REPL, we want to import the Tsl2591 class from tsl2591.py, instantiate an instance,
and call its sample() method. Here is an example session:

>> from tsl2591 import Tsl2591
>>> tsl = Tsl2591('lux-1')
>>> tsl.sample()
296.3712

The lux-1 passed to the the Tsl2591 constructor is the sensor id. In this case, it can be an arbitrary string. The
call to sample() may take almost a second to complete (it takes some time to properly sample the value from the
lux sensor). The value returned in the light reading in units of lux. Try running the sample call again with your hand
covering the light sensor – it should return a lower value. Now, we have verified that the light sensor is working for
us!

24 Chapter 5. 5. ThingFlow Application

Micropython IoT Hackathon Documentation, Release 1.3.4

Debugging problems

If you get an error when instantiating or reading from the light sensor, you might have a bad connection or a problem
with your sensor. Here’s what an error might look like in your REPL session:

>>> from tsl2591 import Tsl2591
>>> tsl = Tsl2591('lux-1')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "tsl2591.py", line 83, in __init__
File "tsl2591.py", line 91, in set_timing
File "tsl2591.py", line 150, in enable
File "tsl2591.py", line 61, in write_byte_data

OSError: [Errno 19] ENODEV

If you get an error like this, double-check your wiring. If you believe all your connections are correct, you might check
whether one of the physical connections is bad. Set your multitester to resistance mode. For each connection, place
one lead on the pin of the ESP2866 board and the other on the associated pin of the TSL2591 board. The resistance
should measure zero if there is indeed a connection.

A Light Sampling Application

Now, we will copy over the main module of ThingFlow and use the scheduler to periodically call our sample method
and print the result. First, start mpfshell in the micropython directory. Copy thingflow.py over to the
ESP8266 as follows:

open TTYDEVICE
put thingflow.py
ls

You should see that thingflow.py is now on the ESP8266.

Next, go back to the MicroPython REPL. We will import the ThingFlow core and our sensor. Then we will instantiate
the sensor object and a scheduler. Finally, we will call the scheduler with the sensor, asking it to sample the sensor
once every two seconds and print the resulting event. Here is the REPL session:

>>> from thingflow import *
>>> from tsl2591 import Tsl2591
>>> tsl = Tsl2591('lux-1')
>>> sched = Scheduler()
>>> sched.schedule_sensor(tsl, 2.0, Output())
<closure>
>>> sched.run_forever()
('lux-1', 344, 294.9023)
('lux-1', 345, 294.9023)
('lux-1', 347, 294.9023)
('lux-1', 349, 288.2113)
('lux-1', 351, 245.6161)
('lux-1', 352, 214.1184)
('lux-1', 354, 48.14401)
('lux-1', 356, 50.75521)
('lux-1', 358, 294.9023)

The schedule_sensor() call takes three parameters: the sensor object to be schedule, the sample interval in
seconds, and the downstream data flow. In this case we are just calling the Output “thing” to print the messages.

5.3. A Light Sampling Application 25

Micropython IoT Hackathon Documentation, Release 1.3.4

The tuples being printed have three elements: the sensor id, a timestamp, and the sensor reading.

In the next section, we’ll see how we can get these samples off the ESP2866 using its WiFi radio and the MQTT
protocol.

26 Chapter 5. 5. ThingFlow Application

CHAPTER 6

6. Messaging with MQTT

MQTT (MQ Telemetry Transport) is a lightweight publish/subscribe messaging protocol frequently used in IoT appli-
cations. It is a very thin layer over TCP/IP, and has many implementations. MQTT is even an OASIS standard1. The
Micropython software for ESP8266 includes a client implementation in the umqtt module2.

MQTT Basics

An MQTT-based application will include two or more clients, which are applications exchanging messages, and a
broker, which is a server that accepts incoming messages and routes them to the appropriate destination client. As
with most publish-subscribe systems, message sends involve publishing on a specified topic. The broker then forwards
the message to all subscribers of that topic. These primitives can be used to build different interaction patterns. The
picture below shows an example:

1 http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
2 The umqttmodule is not in the official Micropython documentation, but module is definitely present in the firmware image. The API is simple

enough that you can understand it by a quick read of the source code: https://github.com/micropython/micropython-lib/tree/master/umqtt.simple
and https://github.com/micropython/micropython-lib/tree/master/umqtt.robust.

27

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://github.com/micropython/micropython-lib/tree/master/umqtt.simple
https://github.com/micropython/micropython-lib/tree/master/umqtt.robust

Micropython IoT Hackathon Documentation, Release 1.3.4

Here, we see a broker with three topics: topic1, topic2, and topic3, which interact with clients using two different
interaction patterns. Client-A and Client-B are publishing their messages to topic1. When a message is received at the
broker, it is passed on to any current subscribers to the topic. In this case, both Client-D and Client-E will receive each
message. We will call this a push pattern, as it is one directional, and the interaction is initiated by the output_thing.
In an IoT context, the output_thing is usually a sensor node and the subscriber(s) are servers that process and store the
sensor data.

Client-C and Client-F are interacting in a request-response or pull pattern. Client-C sends request messages to topic2.
These are received by Client-F, which sends responses on topic3. In an IoT context, this pattern may be useful when
the server wishes to poll the sensor nodes for data or for situations where the sensor nodes need to query a server for
configuration data.

In our application, we will be using the simpler push pattern.

Quality of Service

Networked systems are never 100% reliable – systems may crash, connections can be lost, or parts of an application
taken down for maintenance. This is even more true for IoT systems, where sensors may be in harsh physical environ-
ments. Middleware like MQTT can improve reliability by storing messages and implementing handshake protocols.
However, this has a cost in terms of resources and system complexity. MQTT gives you flexibility by specifying a
Quality of Service (QoS) with each message.

qos is a parameter available on each publish call. It is one of three levels:

• 0 – at most once. This means that the system will make a best effort to deliver the message, but will not store
it and will drop the message in the event of an error. This is typically the behavior you would use in a sensor
application: if a message is lost, the next sensor sample will be coming soon, anyway.

• 1 – at least once. This means that the system will use storage and handshaking to ensure that the message is
delivered. However, in doing so it may send the same message multiple times, resulting in duplicates.

28 Chapter 6. 6. Messaging with MQTT

Micropython IoT Hackathon Documentation, Release 1.3.4

• 2 – exactly one. This means that each message will be delivered, and the handshaking protocol will ensure that
duplicates are not passed to clients. This is the behavior you want if you are implementing a banking system
(but not so much in the IoT world).

For our application, we will use QoS level 0.

Security

MQTT provides security, but it is not enabled by default. For our experiments, we will rely on the encrypted WiFi
connection to provide a basic level of security. MQTT has the option for Transport Layer Security (TLS) encryption,
just as used with HTTPS. We recommend using that for any system you put into production.

MQTT also provides username/password authentication. Note that the password is transmitted in clear text. Thus, be
sure to use TLS encryption if you are using authentication.

Host-side Setup

Now, let us install an MQTT broker on our host system. We will use Mosquitto, an open source broker from the
Eclipse Foundation. It is implemented in C, and can run well on fairly constrained systems (e.g. a Raspberry Pi).
The documentation and other other resources may be found at http://mosquitto.org. The downloads are hosted at the
main Eclipse Foundation Website, and may be found at https://www.eclipse.org/mosquitto/download/. That page has
instructions for installing on most platforms.

You will want to install both the broker and the client utilities (in particular, mosquitto_sub). On Debian-based
Linux distributions (Debian, Ubuntu, Raspbian, etc.) these are in two packages, so you will install them as follows:

sudo apt-get install mosquitto mosquitto-clients

Once installed, make sure that your Mosquitto broker is running and listening to port 1883 (the default). A simple test
can be done with the mosquitto_pub and mosquitto_sub clients. Open two terminal windows. In one, type:

mosquitto_sub -t sensor-data

It should hang and not print anything immediately. The process is subscribing to the topic sensor-data and will
print to standard output any messages that it receives. In the second window, run the following:

mosquitto_pub -t sensor-data -m "hi, there"

You should now see the message printed in the first (subscriber) window. This means that the broker is working. You
can now kill the subscriber with a Control-C.

Finally, if your system has a firewall, make sure that port 1883 is open. Otherwise, connections from the ESP8266
system will be blocked.

ESP8266 Setup

MicroPython already has an MQTT client in its standard library, so we do not need to do much on the ESP8266-side.
We will just copy over some convenience modules provided by ThingFlow.

On your host machine, go to the micropython subdirectory of your ThingFlow repository. Run mpfshell and
copy the scripts for WiFi configuration and MQTT as follows (substituting your tty device name for TTYDEVICE):

6.2. Host-side Setup 29

http://mosquitto.org
https://www.eclipse.org/mosquitto/download/

Micropython IoT Hackathon Documentation, Release 1.3.4

open TTYDEVICE
put wifi.py
put mqtt_writer.py

Interactive Testing

Now, go to the MicroPython REPL (via either the repl command of mpfshell or through screen). We will first
run our import statements:

>>> from thingflow import *
>>> from tsl2591 import Tsl2591
>>> from wifi import wifi_connect
>>> from mqtt_writer import MQTTWriter

Next, we configure the WiFi connection and then connect to the MQTT broker. Here is the code in the REPL (replace
my_wifi_sid, my_wifi_password, and mqtt_broker_ip with values for your environment):

>>> SID='my_wifi_sid'
>>> PASSWORD='my_wifi_password'
>>> MQTT_HOST='mqtt_broker_ip'
>>> wifi_connect(SID, PASSWORD)
network config: (...)
>>> m = MQTTWriter('esp8266', MQTT_HOST, 1883, 'sensor-data')
Connecting to xxx.xxx.xxx.xxx:1883
Connection successful

We can now create a sensor and connect two downstream components: Output, which prints events to the standard
output, and m, our MQTTWriter instance. Here is the REPL session:

>>> sensor = SensorAsOutputThing(Tsl2591('lux-1'))
>>> sensor.connect(Output())
<closure>
>>> sensor.connect(m)
<closure>

Finally, we instantiate an ThingFlow scheduler and schedule our sensor to be sampled once every two seconds:

>>> sched = Scheduler()
>>> sched.schedule_periodic(sensor, 2.0)
<closure>
>>> sched.run_forever()
('lux-1', 611, 284.1312)
('lux-1', 613, 284.1312)
('lux-1', 615, 284.1312)
...

To verify that these messages are being sent to our broker, we can use the utility mosquito_sub on the host machine.
It takes one command line argument, the topic name (in our case sensor-data). We should see something like the
following when we run it:

$ mosquitto_sub -t sensor-data
["lux-1", 624, 284.1312]
["lux-1", 626, 288.2113]
["lux-1", 627, 77.0304]

30 Chapter 6. 6. Messaging with MQTT

Micropython IoT Hackathon Documentation, Release 1.3.4

["lux-1", 629, 35.90401]
...

Great, now you have gotten live sensor data off your ESP8266 board!

Putting it all Together

Now, we will set up the ESP8266 to run our sample/send loop upon startup. We will also run a script on the host to
subscribe to our topic and write the events to a CSV (spreadsheet) file. The source code for this section may be found
on GitHub in the repository for this tutorial. Specifically, look in the example_code folder (https://github.com/
jfischer/micropython-iot-hackathon/tree/master/example_code). The program client.py will run on the ESP8266
and the program server.py will run on our host.

client.py

First, open an editor and create a file config.py that contains configuration variables needed for your network and
system. It should look something like this:

SENSOR_ID='lux-1'
WIFI_ESSID='my_wifi_sid'
WIFI_PASSWORD='my_wifi_password'
MQTT_HOST='mqtt_broker_ip'
MQTT_TOPIC='sensor-data'
SLEEP_TIME=5.0

You will definitely need to change the values for WIFI_ESSID, WIFI_PASSWORD, and MQTT_HOST. The others
can be left as-is.

Now, use mpfshell to copy config.py and client.py to your ESP8266 (substituting for TTYDEVICE or use
Control-] to exit the repl if mpfshell is already running):

open TTYDEVICE
put config.py
put client.py

Next, open a MicroPython REPL session. To start our main loop, we just need to import the client module. Here
is what the REPL session looks like:

>>> import client
Disabled access point, network status is -1
network config: (...)
Connecting to xxx.xxx.xxx.xxx:1883
Connection successful
Running main loop with sample every 5.0 seconds...

The REPL should hang at this point because the ESP8266 is in its main loop. Messages should be sent to the MQTT
broker once every 5 seconds.

Now that we have verified the client.py script, we will configure it to start upon boot. While still in your REPL
session, enter Control-C to break out of the loop. You should see a KeyboardInterrupt exception. We will now
rename client.py to main.py using os.rename(). Upon completion of its boot procedure, MicroPython will
always run the script main.py if it is present. Here is the REPL:

6.5. Putting it all Together 31

https://github.com/jfischer/micropython-iot-hackathon/tree/master/example_code
https://github.com/jfischer/micropython-iot-hackathon/tree/master/example_code

Micropython IoT Hackathon Documentation, Release 1.3.4

>>> import os
>>> os.rename('client.py', 'main.py')
>>> os.listdir()
['boot.py', 'tsl2591.py', 'thingflow.py', 'wifi.py', 'mqtt_writer2.py', 'mqtt_writer.
→˓py', 'config.py', 'main.py']
>>>

Finally, press the reset button of your ESP8266 board. It will reboot. You should see some garbage data followed by
the same sequence of messages that you saw when you imported client from the REPL.

Now, let us turn our attention to the host side of things.

Verifying messages at the server

First, we will verify that we are getting the messages on the host. From your command line run:

mosquitto_sub -t sensor-data

You should see the sensor events printed once every five seconds.

server.py

We will next use the server.py script to read these events and write to a CSV file. It is an ThingFlow script
that subscribes to messages on a specified topic, parses the messages, overwrites the timestamps with the server
timestamp3, and writes the events to a CSV file. Here is a graphical view of the dataflow:

Here is what the core part of the script looks like:

mqtt.select(lambda m:(m.payload).decode('utf-8'))\
.from_json(constructor=SensorEvent)\
.select(lambda evt: SensorEvent(sensor_id=evt.sensor_id,

ts=time.time(),
val=evt.val))\

.csv_writer(filename)

Since it is running on a PC or server, this script uses the full CPython version of ThingFlow. You will need to have
an installation of Python 3. You will also need the paho-mqtt package (installable via pip) and the thingflow
package in your Python environment. Installing ThingFlow can be done in one of three ways:

1. Install ThingFlow via pip: pip install thingflow

3 The ESP8266 does not have a realtime clock and the timestamps we get from it are only seconds since startup time. To work around this, we
overwrite the timestamps on the server. This introduces some inaccuracy, but it should not be significant at our sample rates.

32 Chapter 6. 6. Messaging with MQTT

Micropython IoT Hackathon Documentation, Release 1.3.4

2. Install from your local repository by going to the thingflow-python directory and running python
setup.py install.

3. Just set your PYTHONPATH environment variable to the full absolute path of the repository directory
thingflow-python.

Once this is done, you should be able to run the following:

$ python3
>> import thingflow.base

If this succeeds, you have ThingFlow properly set up. We are now ready to run the server.py script. It takes two
command line arguments: the topic to which it will subscribe and the name of the out CSV file. We’ll run it as follows:

python3 server.py sensor-data test.csv

It should print a message about connecting successfully and then, once every five seconds, print the latest sensor event
like this:

SensorEvent(sensor_id='lux-1', ts=1484535480.613611, val=371.6063)
SensorEvent(sensor_id='lux-1', ts=1484535485.6078472, val=371.6063)
SensorEvent(sensor_id='lux-1', ts=1484535490.4335377, val=371.6063)
SensorEvent(sensor_id='lux-1', ts=1484535495.4575906, val=371.6063)
...

If you look at the file test.csv, you should see four data values for each row:

1. The timestamp in Unix format (seconds since 1970)

2. The timestamp in human readable format

3. The sensor id.

4. The sensor value.

Congratulations! You have gotten the entire system working!

If you are interested, you can look at some more projects to do with your board.

6.5. Putting it all Together 33

Micropython IoT Hackathon Documentation, Release 1.3.4

34 Chapter 6. 6. Messaging with MQTT

CHAPTER 7

7. Projects

We now sketch out several projects you can build starting with your system. These include interfacing additional
sensors, software projects, as well as incorporating the system in a larger application. Currently, this section is just a
sketch. Over time, we will fill out more details.

Sensor Data Visualization

Graphing Light Sensor Data in Jupyter

Given the CSV files we have generated, it is quite easy to use Jupyter and matplotlib to graph the light sensor data
over time. Here is an example plot of light sensor data gathered using the system we have described:

35

http://jupyter.org
http://matplotlib.org

Micropython IoT Hackathon Documentation, Release 1.3.4

Realtime Dashboard of Light Sensor Data

Grafana is an open source web application for displaying time series data. You can use it with Influxdb (a time-series
database) to store and visualize the light sensor data. Here is a picture of the workflow:

36 Chapter 7. 7. Projects

https://docs.grafana.org
https://docs.influxdata.com/influxdb

Micropython IoT Hackathon Documentation, Release 1.3.4

The setup for Influxdb and Grafana is pretty straightforward. You can find a ThingFlow script to read sensor events
from a MQTT broker and write them to Influxdb in the example_code directory of this documentation’s Git repos-
itory. The script is called server_mqtt_to_influx.py. Run the script with --help to see the command line
options for configuring the connections to the broker and Influxdb.

The only non-intuitive part of the setup was the Grafana chart configuration. Be sure to set the “Group by time interval”
parameter. For a five second sensor sample interval, use “>5s”. Here is a screen shot of the full configuration I used:

A Grafana screenshot showing a chart of the light sensor data:

Lighting Replay Application

See https://github.com/mpi-sws-rse/thingflow-examples/tree/master/lighting_replay_app. This is an application
which uses captured light sensor data to train a Hidden Markov Model. This model then is replayed when you are not
home, to turn lights on and off in a realistic manner.

More Sensors

Temperature Sensor

There are many temperature sensors on the market. One well-documented sensor is the MCP9808 breakout board from
Adafruit. Like our light sensor, it uses the IC2 bus for communication. To use the sensor, you need four connections:
ground, power, SDA, and SCL. Power and ground can be connected to the power and ground lines of your breadboard

7.2. Lighting Replay Application 37

https://github.com/jfischer/micropython-iot-hackathon
https://github.com/jfischer/micropython-iot-hackathon
https://github.com/mpi-sws-rse/thingflow-examples/tree/master/lighting_replay_app
https://www.adafruit.com/products/1782

Micropython IoT Hackathon Documentation, Release 1.3.4

or directly to the associated pins on the ESP8266. For the SDA and SCL pins, you can either connect them directly to
the ESP8266 or daisy-chain them (connect in series) through the Lux sensor. Assuming you already have the TSL2591
sensor wired to your ESP8266, here are the connections you will need:

Signal Name Location of Source Location of Destination
GND

Bottom row of
breadboard

MCP9808 board
pin #2 from left

3V

Top row
of breadboard

MCP9808 board
ping #1 from left

SDA

TSL2591 board
pin #5 from left

MCP9808 board
pin #4 from left

SCL

TSL2591 board
pin #6 from left

MCP9808 board
pin #3 from left

ThingFlow for MicroPython has a sensor class for the MCP9808 located in micropython/sensors/mcp9808.
py. Here is an example MicroPython REPL session where we sample both the lux and temperature sensors using
ThingFlow:

>>> from thingflow import *
>>> from tsl2591 import Tsl2591
>>> from mcp9808 import Mcp9808
>>> lux = Tsl2591()
>>> temperature = Mcp9808()
Read manufacturer ID: 0054
Read device ID: 0400
>>> sched = Scheduler()
>>> sched.schedule_sensor(lux, 10, Output())
<closure>
>>> sched.schedule_sensor(temperature, 10, Output())
<closure>
>>> sched.run_forever()
('tsl2591', 108, 162.221)
('mcp9808', 108, 26.1875)
('tsl2591', 117, 162.221)
('mcp9808', 117, 26.1875)
('tsl2591', 126, 1.5096)
('mcp9808', 126, 26.1875)

Finally, Adafruit has a tutorial about using this sensor with MicroPython here.

Door Open/Close Detector

Adafruit describes a project to interface the ESP8266 to a door open/closed switch here: https://learn.adafruit.com/
using-ifttt-with-adafruit-io/overview. It is Arduino based, but should be easily adaptable to MicroPython.

38 Chapter 7. 7. Projects

https://learn.adafruit.com/micropython-hardware-i2c-devices
https://learn.adafruit.com/using-ifttt-with-adafruit-io/overview
https://learn.adafruit.com/using-ifttt-with-adafruit-io/overview

Micropython IoT Hackathon Documentation, Release 1.3.4

Accelerometer

An accelerometer opens up a number of interesting project ideas. For example, a student at the Max Planck Institute
for Software Systems built a machine learning-based gait analysis application. She used an ESP8266, the ADXL345
breakout board from Adafruit, MicroPython, and ThingFlow. A ThingFlow sensor for the ADXL345 is located in the
ThingFlow repository at thingflow-python/micropython/sensors/adxl345_upy.py. The machine
learning was done in Python with scikit-learn.

Actuators

Turning on an external LED

Perhaps the simplest hardware interfacing is to an LED. There are many tutorials online about how to do this. You
will need three connections: from a GPIO pin to the LED, from the LED to a resistor, and from the resistor to GND.

NeoPixel Strips

NeoPixels are addressable LED light sets available from Adafruit and others. MicroPython provides a
NeoPixel “driver” library. ThingFlow for MicroPython provides a convenient interface on top of this – see
thingflow-python/micropython/neopixel_writer.py.

Open-ended Projects

Adafruit Circuit Playground Express

The Circuit Playground Express (CPX) is a board from Adafruit that includes a Cortex M0 processor, temperature,
motion, sound, and light sensors, NeoPixel lights, a speaker, and more. It runs CircuitPython, which is Adafruit’s port
of MicroPython to their system.

There are a lot of applications possible with this kind of board. In the directory example_code/cpx, Daniel
Mizyrycki has graciously provided code from a cool demo. He uses a potentiometer connected to an ESP8266 to
wirelessly control the NeoPixel lights on the Circuit Playground Express. Here is a picture of the demo in action:

7.4. Actuators 39

https://www.adafruit.com/product/1231
https://www.adafruit.com/product/1231
http://scikit-learn.org
https://docs.micropython.org/en/latest/esp8266/esp8266/quickref.html#neopixel-driver
https://www.adafruit.com/product/3333

Micropython IoT Hackathon Documentation, Release 1.3.4

Power Management

The ESP8266 has various power saving modes. If you have a simple sensor application that samples once a minute
or less, you should be able to turn off the WiFi radio and put the board into a deep sleep mode. Some people claim
that you can Run your ESP8266 for Years on a Battery, but there probably are complications in the real world. For
example: How much power does your sensor consume? Can you turn it off programmatically? Can you avoid DHCP
initialization when the radio is turned back on?

You can use a voltage divider to reduce the battery voltage below the 1.0V limit of the ESP8266 Analog to Digital
converter. That would enable you to measure the voltage over time. Here are some instructions at Adafruit: https:
//learn.adafruit.com/using-ifttt-with-adafruit-io/wiring#battery-tracking.

On the software side, the ThingFlow scheduler optimizes samples to maximize the sleep time. The sleep can be easily
changed to one of the deep sleep modes.

Using the ESP8266 as a WiFi Modem

The ESP8266 was originally developed to used in conjunction with larger microcontrollers. The intent was for the
ESP8266 to provide WiFi capabilities, while the primary microcontroller provided the main processing. In fact, the
original ESP8266 firmware included a Hayes-style (“ATDT”) modem command set over the serial port.

There are still hobbyist use cases for the ESP8266 as a WiFi modem. For example, you might have a larger Arduino
system that does not already support wireless operation. Can you connect the ESP8266 to these kind of systems via

40 Chapter 7. 7. Projects

http://bbs.espressif.com/viewtopic.php?t=133
https://openhomeautomation.net/esp8266-battery/
https://learn.adafruit.com/using-ifttt-with-adafruit-io/wiring#battery-tracking
https://learn.adafruit.com/using-ifttt-with-adafruit-io/wiring#battery-tracking

Micropython IoT Hackathon Documentation, Release 1.3.4

its second serial port? Can you emulate some modem functionality in MicroPython?

Home Assistant Integration

Home Assistant is a Python3 open-source application framework for automating your home. Since Home Assistant
already supports MQTT, it should be easy to integrate remote ESP8266 nodes into the application. Can you do it?
What cool applications can you build?

Another Micropython/ESP8266 Tutorial

We recently found another tutorial about Micropython and the ESP8266. It is more focused on lower level sensors
and has some interesting hardware projects. It is called “MicroPython on ESP8266 Workshop” and is available here:
http://micropython-on-esp8266-workshop.readthedocs.io/en/latest/index.html.

Finally, we conclude with some advice for hosting a hackathon.

7.6. Another Micropython/ESP8266 Tutorial 41

https://home-assistant.io/
http://micropython-on-esp8266-workshop.readthedocs.io/en/latest/index.html

Micropython IoT Hackathon Documentation, Release 1.3.4

42 Chapter 7. 7. Projects

CHAPTER 8

8. Teachers’ Notes

In this section, we provide some advice to teachers of the class.

Announcement

Here is a sample announcement that can be used for the Hackathon:

Due in large part to the availability of cheap, low-power, internet-connected microcontrollers, the Internet
of Things is taking off. Python developers can get in on the excitement with MicroPython, an imple-
mentation of Python 3 that runs on very small devices with no operating system. MicroPython provides
the standard Python REPL (read-eval-print-loop) interface, so you can interactively develop and debug
applications on these small devices.

In this session, you will learn some basic electronics, wire up some sensors to a low-power wireless con-
troller board (based on the ESP8266 microcontroller), load the MicroPython firmware, and interactively
write simple applications to read from the sensors. We will also discuss how to connect to other systems
via the MQTT messaging protocol and exchange ideas on larger projects that can be built at home for low
cost with beginner-level knowledge.

Hardware is provided, the only prerequisite is to bring a laptop with a USB port. Here is a picture of the
completed project: https://data-ken.org/images/lighting-app-esp8266.png

Soldering and Hardware Preparation

The breakout boards from Adafruit (e.g the Feather HUZZAH with ESP8266 or the TSL2591 light sensor) need to
have their headers soldered to the boards. Unless your facility is a hardware lab set up for this kind of thing, we
recommend doing the soldering in advance. For the first running of the hackathon, we soldered the boards and seated
them on the breadboard. Here’s what the set of boards looked like (10 student boards, 1 demo board, 1 spare):

43

https://data-ken.org/images/lighting-app-esp8266.png

Micropython IoT Hackathon Documentation, Release 1.3.4

I verified that each board was functional by flashing the latest version of MicroPython to it. I did not test the light
sensors, but did have a spare.

Lecture

The repository containing this documentation also contains a lecture presentation (lecture.pptx and lecture.
pdf). We recommend walking through this presentation before the hands-on section. The goal is to provide students
with some context and an overview of the project.

44 Chapter 8. 8. Teachers’ Notes

https://github.com/jfischer/micropython-iot-hackathon

CHAPTER 9

9. Quick Software Setup

This set of steps is designed as a fast alternative initial software and firmware setup. They are particularly recom-
mended when time is a concern, or blocking issues arise.

The script make_zip.sh at the root of this repo was used to build micropython-iot-software.zip, removing network
dependency and improving reliability. The instructions below assume that you have this zip file available, either
created through make_zip.sh or given to you by your instructor.

To check that the light sensor is working, you will need to wire up your board and connect it to your USB port, as
described in the hardware assembly chapter.

We include two version of the instructions, one for Debian 9 Linux and one for MacOS. If you have another system,
please follow the full instructions in Firmware and Testing. You should still be able to use the files from the zip, as
most are portable across OSs. Look at here for OS-specific needs.

Debian 9 Linux

We copy-and-paste tested these instructions using a modern Debian 9 with python 3.6.2 (from sid) and the screen
program.

Create project directory and virtual environment
mkdir -p ~/micropython-iot-hackathon
cd ~/micropython-iot-hackathon
python3.6 -m venv venv

Activate python virtual environment [Notice the (venv) prompt indicating
you are now within the virtual environment]
source venv/bin/activate

Install software
unzip micropython-iot-software.zip
pip install --upgrade micropython-iot-software/python-tools/*whl

Upload to latest firmware. (Use /dev/tty.SLAB_USBtoUART for OSX)

45

https://github.com/jfischer/micropython-iot-hackathon/blob/master/make_zip.sh

Micropython IoT Hackathon Documentation, Release 1.3.4

esptool.py --port /dev/ttyUSB0 erase_flash
esptool.py --port /dev/ttyUSB0 --baud 460800 write_flash --verify \

-fm dio 0 micropython-iot-software/esp8266-20170612-v1.9.1.bin

Enter the micropython REPL using the terminal (and press Enter key to
see the promt ">>>". To exit, use Ctrl-a + \ + y)
screen /dev/ttyUSB0 115200
>>> print('Hello world')
[Exit screen, using: Control-A + k + y]

Upload libraries to micropython
export AMPY_PORT=/dev/ttyUSB0
ampy put micropython-iot-software/micropython lib
ampy put micropython-iot-software/micropython/client.py main.py

Check data can be read
screen /dev/ttyUSB0 115200
>>> from tsl2591 import Tsl2591
>>> tsl = Tsl2591('lux-1')
>>> tsl.sample()
[Exit screen, using: Control-A + k + y]

MacOS

First, download and install the Anaconda for Python 3.6 distribution from https://www.continuum.io/downloads. We
will use the conda virtual environment tool instead of the standard Python 3 venv.

To communicate with the ESP8266 over your Mac’s USB port, you will also need to install a serial driver (found in
your zip distribution at micropython-iot-software/drivers/Mac_OSX_VCP_Driver.zip).

This was tested on MacOS Sierra.

Create project directory and virtual environment
mkdir -p ~/micropython-iot-hackathon
cd ~/micropython-iot-hackathon
Create virtual environment. Enter "y" when asked whether to proceed.
conda create -n micropython-iot-hackathon python=3.6 anaconda

Activate python virtual environment [Notice the (micropython-iot-hackathon)
prompt indicating you are now within the virtual environment].
source activate micropython-iot-hackathon

Install software
unzip micropython-iot-software.zip
pip install --upgrade micropython-iot-software/python-tools/*whl

Upload to latest firmware. (Use /dev/tty.SLAB_USBtoUART for OSX)
esptool.py --port /dev/tty.SLAB_USBtoUART erase_flash
esptool.py --port /dev/tty.SLAB_USBtoUART --baud 460800 write_flash --verify \

-fm dio 0 micropython-iot-software/esp8266-20170612-v1.9.1.bin

Enter the micropython REPL using the terminal (and press Enter key to
see the promt ">>>". To exit, use Ctrl-a + \ + y)
screen /dev/tty.SLAB_USBtoUART 115200
>>> print('Hello world')
[Exit screen, using: Control-A + k + y]

46 Chapter 9. 9. Quick Software Setup

https://www.continuum.io/downloads

Micropython IoT Hackathon Documentation, Release 1.3.4

Upload libraries to micropython
export AMPY_PORT=/dev/tty.SLAB_USBtoUART
ampy put micropython-iot-software/micropython lib
ampy put micropython-iot-software/micropython/client.py main.py

Check data can be read
screen /dev/tty.SLAB_USBtoUART 115200
>>> from tsl2591 import Tsl2591
>>> tsl = Tsl2591('lux-1')
>>> tsl.sample()
[Exit screen, using: Control-A + k + y]

Have fun!

9.2. MacOS 47

Micropython IoT Hackathon Documentation, Release 1.3.4

48 Chapter 9. 9. Quick Software Setup

CHAPTER 10

Copyright and License

Copyright 2016, 2017 by Jeffrey Fischer and contributers.

This document is made available under a Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA 4.0) license.
This allows you to remix, transform, and distribute the content, provided you cite the original authors and provide
your content under the same license as the original.

Example code and any other software in the associated repository is made available under the MIT License. This
allows you to reuse the examples, with very few restrictions.

49

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/jfischer/micropython-iot-hackathon

Micropython IoT Hackathon Documentation, Release 1.3.4

50 Chapter 10. Copyright and License

CHAPTER 11

Acknowledgements

The following people have contributed to this repository (listed in chronological order):

• Jeff Fischer

• Simeon Franklin

• Eric Theise

• Daniel Mizyrycki

We thank all the contributers for their help! Thank you also to those who have participated in or facilitated past IoT
Hackathons.

51

Micropython IoT Hackathon Documentation, Release 1.3.4

52 Chapter 11. Acknowledgements

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

53

	1. Introduction
	Background
	Hardware Overview
	Software Overview
	GitHub Repository
	Outline of this Document

	2. Required (and Recommended) Parts and Tools
	Parts
	Recommended Tools

	3. Hardware Assembly
	Cautions
	Breadboards
	Seating and Soldering the Breakout Boards
	Board connections
	Verifying Connections

	4. Software and Firmware Install
	Software Prerequisites
	Testing Your Connection
	Installing the Firmware and Testing the REPL

	5. ThingFlow Application
	ThingFlow
	Reading the Light Sensor
	A Light Sampling Application

	6. Messaging with MQTT
	MQTT Basics
	Host-side Setup
	ESP8266 Setup
	Interactive Testing
	Putting it all Together

	7. Projects
	Sensor Data Visualization
	Lighting Replay Application
	More Sensors
	Actuators
	Open-ended Projects
	Another Micropython/ESP8266 Tutorial

	8. Teachers' Notes
	Announcement
	Soldering and Hardware Preparation
	Lecture

	9. Quick Software Setup
	Debian 9 Linux
	MacOS

	Copyright and License
	Acknowledgements
	Indices and tables

